THE REACTION OF 2-(1,3-BUTADIENYL) MAGNESIUM CHLORIDE

Kiyosi KONDO, Satoshi DOBASHI, and Masakatsu MATSUMOTO

Sagami Chemical Research Center

Nishi-Ohnuma 4-4-1, Sagamihara, Kanagawa 229

The reaction of 2-(1,3-butadienyl)magnesium chloride $(\underline{1})$ with aldehydes and ketones afforded a mixture of 1,3-dienyl alcohol $(\underline{3})$ and 1,2-dienyl alcohol $(\underline{4})$. The selective formation of another 1,3-dienyl alcohol $(\underline{6})$ was observed when the Grignard reagent $(\underline{1})$ was treated with epoxides. The latter reaction was applied to the synthesis of the sex attractant of a bark beetle.

Although 2-(1,3-butadieny1) magnesium chloride ($\underline{1}$) was originally prepared from 4-chloro-1,2-butadiene 1 and later one from easily accessible 2-chloro-1,3-butadiene (chloroprene), 2 only limited amount of information on its reactivity has been accumulated so far. 1,2,3 The unique structure of the compound $\underline{1}$, i. e., partially allylic and partially vinylic nature, stimulated us to investigate the reactivities of $\underline{1}$ toward aldehydes, ketones, and epoxides. As it is expected that the product derived from $\underline{1}$ will have diene function, the information thus obtained may provide a new and simple route to certain biologically active natural products.

The Grignard reagent $\underline{1}$ was prepared from chloroprene by Sultanov's method, and was found to be stable at room temperature for a week or more under an argon atmosphere. Acetaldehyde ($\underline{2}$ a) was treated with an equimolar amount of $\underline{1}$ in tetrahydrofuran at ambient temperature for 1 hr. Usual work-up followed by distillation of the crude reaction products afforded a mixture of 2-(1-hydroxyethyl)-1,3-butadiene ($\underline{3}$ a) and 5-hydroxy-1,2-hexadiene ($\underline{4}$ a), bp 60°C/25mmHg, $\underline{3}$ a/ $\underline{4}$ a = 8/2, in 64% total yield. Similarly, formaldehyde ($\underline{2}$ b), 2-methylpropanal ($\underline{2}$ c), 4-methylpentanal ($\underline{2}$ d), and benzaldehyde ($\underline{2}$ e) were treated with $\underline{1}$ to give mixtures of the corresponding alcohols $\underline{3}$ and $\underline{4}$. The reaction of $\underline{1}$ with aliphatic aldehydes usually afforded the alcohol $\underline{3}$ as the major product, while that with aromatic aldehyde produced $\underline{4}$ predominantly. The results are summerized in Table I.

The similar product selectivity was observed in the reaction of ketones with 1

(Table I). Thus, alkyl ketones, such as acetone ($\underline{2}f$) and cyclohexanone ($\underline{2}h$), afforded the adducts $\underline{3}$ preferentially. On the other hand, aromatic ketones, especially benzophenone ($\underline{2}j$), were converted selectively to the 1,2-dienyl alcohol $\underline{4}$ and only minor or undetectable amount of the corresponding 1,3-dienyl alcohol $\underline{3}$ was found in the product. An interesting result was observed when the reaction was applied to a sterically hindered ketone. Treatment of $\underline{1}$ with \underline{t} -butyl metyl ketone ($\underline{2}g$) now afforded the 1,2-dienyl alcohol $\underline{4}g$ as the sole addition product, though the yield was not so satisfactory.

The following conclusions can be drawn from these results. 1) Although the IR and NMR spectra of $\underline{1}$ indicate that magnisium atom is bound to the 2-carbon, the reagent $\underline{1}$ acts as both vinylic and allylic Grignard reagent in the reaction with carbonyl compounds. 2) In general, the reagent $\underline{1}$ adds preferentially at the

$$\frac{\text{MgCl}}{\frac{1}{2} \frac{1}{3} \frac{1}{4}} + \frac{R^{1}}{R^{2}} C=0 \qquad \frac{R^{1}}{OH} + \frac{R^{1}}{OH} \frac{R^{2}}{OH} + \frac{R^{2}}{OH} \frac{1}{2} \frac{1}{2}$$

Table I. The reaction of 1 with aldehydes and ketones.

	Substrate	Yield	Produc	t ratio*	Bp of the mixture of
	R^1 R^2	(%)	<u>3</u>	4	3 and 4 (°C/mmHg)
<u>2</u> a	Me H	6 4	80	20	60/25
<u>2</u> b	н н	42	57	43	54-55/24
<u>2</u> c	Pr ⁱ H	56	62	38	52/4
<u>2</u> d	Am ⁱ H	89	80	20	73-75/3
<u>2</u> e	Ph H	73	39	61	72-74/2
<u>2</u> f	Me Me	56	74	26	42-43/5
<u>2</u> g	Bu ^t Me	38	0	100	83-85/5
<u>2</u> h	-(CH ₂) ₅ -	51	72	28	90-92/6
<u>2</u> i	Ph M∈	63	19	81	70-72/1.5
<u>2</u> j	Ph Ph	92	0	100	161-163/0.6

^{*} The product rations were calculated from NMR spectra of the mixture by comparing the integrals of peaks characteristic to $\underline{3}$ and $\underline{4}$.

C-2 carbon in the reaction with soft electrophiles, 4,5 while with relatively hard electrophiles, such as benzaldehyde and acetophenone, it adds at the harder terminus, i.e., C-4 position. 3) However, toward sterically encumbered ketones, it adds exclusively at the less crowded C-4 position.

When 1,2-epoxybutane ($\underline{5}a$) was treated with $\underline{1}$, the normal adduct, 5-methylene-6-hepten-3-ol ($\underline{6}a$) was obtained in 77% yield. Similarly, ethylene oxide ($\underline{5}b$), cyclohexene oxide ($\underline{5}c$), and epichlorohydrin ($\underline{5}d$) gave selectively the corresponding normal adduct $\underline{6}$ in good yields. The results are summerized in Table II. In all these cases, there was observed no 1,2-dienyl alcohol in the product. The reaction of styrene oxide with $\underline{1}$ produced an adduct ($\underline{6}e$) (60%) which was contaminated with a small amount of a 1,2-dienyl alcohol. The addition of organometallic compound to styrene oxide usually occurs on benzylic position and the formation of $\underline{6}e$ is in good accord with this phenomenon.

The product derived by the reaction of reagent $\underline{1}$ at C-2 position has 3-substituted 1,3-diene structure, which coincides with the partial structure of certain isoprenoids. The selective formation of 1,3-dienyl alcohol of type $\underline{6}$ can now conveniently be applied to the synthesis of monoterpene alcohol $\underline{6}f$, which is known as one of the principal components of the sex attractant produced in the frass of the male bark beetle, Ips confusus. Thus the reaction of $\underline{1}$ with 4-methyl-1,2-

Table II. The reaction of 1 with epoxides 5.

s	ubstrate R ^l	R ²	Yield (%)	Bp of <u>6</u> (°C/mmHg)
<u>5</u> a	Et	Н	77	53/3
<u>5</u> b	Н	Н	50	68/23
<u>5</u> c	-(CH ₂) 4-	51	63/1
<u>5</u> đ	ClCH ₂	H	58	76/4
<u>5</u> e	Н	Ph	60	93/0.7

epoxypentane afforded the desired product $\underline{6}f$ in 72% yield. The spectral data of $\underline{6}f$ were identical with those of the published one. The 1,3-dienyl alcohol $\underline{3}d$ as well as the condensation product of $\underline{1}$ with 4-methyl-4-pentenal, i.e. $\underline{7}$ (85% yield), could be used as starting materials for the synthesis of naturally occurring furanoterpens.

References

- 1) C. A. Aufdermarsh, Jr., J. Org. Chem., 29, 1994 (1964).
- 2) N. T. Sultanov, S. D. Mekhtiev, T. G. Efendieva, Sh. Ya. Kodzhaeva, M. A. Aleieva, and F. A. Mamedov, U. S. S. R. Pat., 280,476 (1970); cf. Chem. Abstr., <u>74</u>, 142, 040^q (1971).
- 3) R. S. H. Liu and G. S. Hammond, J. Amer. Chem. Soc., 89, 4936 (1967).
- 4) R. G. Pearson, ibid., 85, 3533 (1963).
- 5) D. Seyferth, G. J. Murphy, and R. A. Woodruff, ibid., 96, 5011 (1974).
- 6) For a review, see G. Courtois and L. Migniac, J. Organometallic Chem., 69, 1, (1974).
- 7) C. A. Reece, J. O. Rodin, R. G. Brownlee, W. G. Duncan, and R. M. Silverstein, Tetrahedron, 24, 4249 (1968).
- 8) M. Matsumoto and K. Kondo, The Preprint of 31th Annual Meeting of Chemical Society of Japan, Vol I, P 345 (1974).

(Received August 2, 1976)